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Abstract We present the application of a deterministic

fractal geometric approach—the so-called fractal-multi-

fractal procedure, FMFP—to the modeling of hydrologic

data at different resolutions. The FMFP can generate a

wide range of complex patterns that are virtually indistin-

guishable from observed hydrologic data sets (e.g., rainfall

series, radar images, clouds, contamination plumes, width

functions). We illustrate the use of the FMFP for hydro-

logic data encoding and model simplification by comparing

a few representative rainfall time series to FMFP-generated

patterns. We also present the time evolution of two-

dimensional FMFP-patterns reminiscent of rainfall-radar

images. As the deterministic FMFP-generated patterns are

completely characterized by a small number of geometric

parameters, we discuss the prospect of compact descrip-

tions of hydrologic data sets. We also discuss how this

parsimonious deterministic parameterization may eventu-

ally lead to the classification of patterns and simplification

in the records’ parameter space. Finally, we highlight some

connections between the FMFP and nonlinear and chaotic

dynamics.

Keywords Hydrologic modeling � Rainfall time series �
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1 Introduction

Modeling the dynamics of hydrologic information, rainfall

in particular, constitutes one of the most important

unsolved problems in hydrology today. During the past few

decades, a great deal of research has been devoted to

gathering vast sets of hydrologic records and to developing

a host of hydrologic models. Rainfall models, specifically,

may be roughly divided into four classes: (i) physically-

based models (e.g. Georgakakos and Bras 1984), (ii) sto-

chastic point process models (e.g. Rodrı́guez-Iturbe 1986;

Morrissey 2009), (iii) stochastic cascade models (e.g.

Lovejoy and Schertzer 1990; Gaume et al. 2007), and (iv)

low-dimensional chaotic models (e.g. Sivakumar et al.

2001). Despite considerable progress, however, these rep-

resentations do not account for all relevant information

and, hence, predictions having non-trivial errors still

remain. Stochastic and chaotic models of temporal rainfall

reproduce, for instance, important characteristics of the

records, such as moments, correlations, and/or fractal and

chaotic properties, but typically fail to capture the specific

details of rainfall series, such as the position of the peak

with respect to the beginning of the event, or periods of no

activity during the event itself. The incorrect prediction of

these important features often results in the underestima-

tion of observed extremes.

In the last few years, we have developed a novel geo-

metric modeling approach aimed at representing complex

hydrologic (and geophysical) data sets as projections of

fractal functions illuminated by multifractal sets, the frac-

tal-multifractal procedure (FMFP) (e.g. Puente 1992, 1996,

2004) and its extensions (e.g. Cortis et al. 2009). Contrary to

the most common approaches mentioned before, the fractal-

multifractal approach (and its extensions) is an entirely

deterministic procedure that aims at capturing not only the
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important statistics of the records but also their entire

geometric details (e.g. Puente and Sivakumar 2007).

To date, the FMFP has been applied in the context of

hydrologic applications, to: (i) one-dimensional data sets

(e.g. rainfall, turbulence, width function, chaotic signals) as

measured in time at a given site (e.g. Puente and Obregón

1996, 1999; Puente et al. 2002; Puente and Sivakumar

2003), and (ii) two-dimensional spatial patterns (radar

images, contamination plumes) as gathered over a region

(e.g. Puente et al. 2001a, b).

In this work, we first review the fundamentals of the

fractal-multifractal method and its possible extensions, and

then illustrate its application to the hydrologic sciences

showing a series of synthetic rainfall data series (at dif-

ferent resolutions) and synthetic radar-rainfall images.

2 The fractal-multifractal procedure (FMFP) and its

extensions

The key elements of the original FMFP are illustrated in

Fig. 1a. A parent multifractal distribution dx (bottom left)

is transformed by a fractal interpolating function f, from x

to y, (upper left) to generate the derived distribution dy

(upper right).

A fractal interpolating function is constructed by iter-

ating at least two contractive affine maps of the form

(Barnsley 1988):
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The particular function shown in Fig. 1a is obtained

from two such maps, setting the parameters d1 = -0.8,

d2 = -0.6, and finding all the others, that is, an, cn, en, and

fn, from the boundary conditions:
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that ensure that the resulting attractor passes by the three

points marked as circles, namely {(0, 0), (1/2, -0.35),

(1, -0.2)}.

By iterating such two maps in a random fashion

according to a 0.3–0.7 proportion, say 218 times, and by

keeping track of the points obtained, one may define the

graphs in Fig. 1a as follows. The distribution dx is found

projecting the set of points over the x-axis and finding its

histogram, which, given the decoupled nature of the maps

in x, corresponds to a binomial multifractal measure as

obtained from a deterministic multiplicative cascade

(Mandelbrot 1989). The distribution dy is similarly

obtained as a histogram of projected values over the y-axis,

that is hence defined as a (fractional) integration of the

measure in x by adding contributions associated with

the crossings of the function f, or in other words, dy is the

derived distribution of dx as defined via the function f,

which itself is obtained just by plotting the 218 (x, y) points.

The set of points in the x–y plane define indeed a non-

trivial function that is typically non-monotonic and not one-

to-one (Barnsley 1988). However, such a set is a stable

attractor for the affine maps, irrespective of the random

order for the iterations; and, hence, the geometric con-

struction just illustrated turns out to be fully deterministic.

The parameters an and dn determine the fractal dimension of

the graph of the function f (Barnsley 1988), which for the

example has a value of 1.48. As may be appreciated, the

parameters for Fig. 1a were chosen to let the distribution dy

resemble a rainfall time series, and other interesting sets

may be found from other parameter values and from the

iteration of more than two affine maps (Puente 2004).

Fig. 1 The FMFP and its extensions. a The original framework in

two dimensions: from a parent distribution dx to a derived distribution

dy via a fractal interpolating function f from x to y. b The FMFP

framework in three dimensions: a fractal interpolating function f from

x to the plane y–z (top), and a derived joint distribution over the plane

y–z (bottom). c Domain partition for a four-dimensional extension
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Multifractal distributions, in particular the one shown as

dx in Fig. 1a, are ubiquitous in turbulent phenomena (e.g.

Meneveau and Sreenivasan 1987). For this reason, the

distribution dy shown may be given an informal ‘‘physical’’

interpretation as a ‘‘projection’’ or ‘‘reflection’’ of turbu-

lence. In this light, one may interpret the fractal function f

as a summary of the travel times it takes rainfall-producing

particles to wander about in the atmosphere until they land

at the site under consideration. As the transformation on

our geometric procedure conserves mass, such raindrops

(originally distributed as in the generic turbulent cascade)

‘walk’ and ‘coalesce’ due to turbulent eddies and finally

arrive at the raingage in distinct travel paths reflecting the

specific complex geometries observed.

The FMFP may be extended in a variety of ways in

order to define yet other interesting derived patterns. A

suitable way to do this is to add a bounded nonlinear

perturbation g(y) on the y-component of the affine maps

(Cortis et al. 2009):
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say g(y) = A cos(x y), while keeping the boundary con-

ditions, as in Eq. 2, fixed. As shall be illustrated later on,

such an extension yields other interesting distributions that

may also be used to model hydrologic phenomena, and in

particular rainfall time series.

Another way to extend the FMFP is to use affine maps

defined over more than two dimensions such that they

generate fractal interpolating functions in higher dimen-

sions (e.g. Barnsley 1988; Puente and Klebanoff 1994). As

illustrated in Fig. 1b, a construct in three dimensions

involves a wire-like fractal function f (from x in the vertical

to the horizontal plane y–z) that allows the calculation of

marginal measures over the y and z axes and also joint

derived distributions over the y–z plane. Application of

these notions to model two-dimensional rainfall patterns

will be discussed in the next section.

Yet another plausible extension of the ideas is to replace

the domain of the fractal functions from one to two

dimensions, so that instead of generating wires one obtains

hyper-surfaces in four dimensions, from say the plane x–y

to the plane z–t. As illustrated in Fig. 1c, the simplest of

such representations entails the usage of four maps that

generalize the boundary conditions given in Eq. 2 for two

maps, that is, such that mapping a large triangle S into the

four sub-triangles Sk leads to a hyper-surface that passes by

six points in a four-dimensional space. At the end, this

extension yields joint derived distributions over the plane

z–t and also marginal derived distributions over the z- and

t-axis that, as shall be seen later on, may also be used to

model, in particular, rainfall sets, and surely others, in one

and two dimensions.

3 FMFP-generated rainfall time series and radar

images

Analytical derivations of the derived distributions (and of

their statistical-multifractal properties) are extremely dif-

ficult to obtain, even for the original FMFP (Puente 1992).

Numerical experimentation is thus essential to study the

many patterns that can be obtained by varying the geo-

metric parameters of the FMFP. In this section, we illus-

trate how the FMFP and its variants can be used to simulate

rainfall time series at a variety of resolutions. To this end,

examples over one and two dimensions are shown next.

Figures 2 and 3 present typical rainfall time series when

sampled every few seconds and every few hours, respec-

tively, together with their corresponding autocorrelation

functions, power spectra, and multifractal spectra.

While Fig. 2a corresponds to an actual rainfall event

recorded in Boston every 15 s and for a total of about 8.3 h

of observations, the other three sets in Fig. 2 are FMFP-

generated sets that, as may be readily appreciated, have

similar textures and intermittencies as the Boston storm.

These three FMFP ‘‘storms’’ are generated as follows. The

one labeled b is simply the one reported in Fig. 1a via the

original FMFP whose fractal function passes by three

points. The one labeled c is obtained via the FMFP also

defined from an attractor passing by three points, but

adding a nonlinear cosine perturbation with magnitude

A = 0.5 and frequency x = 1. And the one labeled d

corresponds to a one-dimensional marginal projection as

generated extending the FMFP, so that it creates a hyper-

surface passing by six points. Due to space limitations, the

final parameters used to generate these patterns are not

reported here but can be found at http://puente.lawr.

ucdavis.edu/serra_09.htm.

The signals in Fig. 2 exhibit all the distinctive features of

rainfall time series, and clearly it is not possible to discern

the synthetic from the measured. This is also evident from a

comparison of their statistical and multifractal characteris-

tics. The four sets share in fact similar decays in their

autocorrelation functions and reasonable correlation scales

se (the lag where 1/e is reached) ranging from 80 to 200 lags;

all signals exhibit power-law scaling in their power spec-

trum (S(w) * w-b) with spectral exponents b that include

common values ranging from 1.15 to 1.37 (computed up to a

logarithmic frequency scale of 2.2); all sets possess similar

multifractal properties as reflected by their parabolic mul-

tifractal spectra (f vs. a curve), leading to similar entropy

dimensions D1 ranging from 0.85 to 0.96, as defined by the

intersection of the parabola and the f = a line; and also it

can be shown (not included) that all signals define low-

dimensional chaotic dynamic systems of similar dimensions

(Puente and Obregón 1996; Puente et al. 2002). As the sets

in Fig. 2 cannot be distinguished from one another regarding
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the overall features on such relevant qualifiers, we conclude

that the FMFP framework can be used to simulate and

encode detailed hydrologic information, as found in rainfall

data sets gathered every few seconds.

When rainfall is sampled at a finer (i.e. coarser) reso-

lution, say hours or more, periods of no rain activity are

typically observed. It is, therefore, legitimate to ask if the

FMFP can reproduce these characteristics of rainfall as

well. This can, in fact, be achieved by defining fractal

functions that interpolate four or more points (i.e., by

iterating three or more maps) while at the same time

quenching the relative impact of a selected subset of these

maps (e.g., iterating three maps according to frequencies,

say 0.65-0-0.35). By means of this generalization, the

parent distribution dx so constructed contains a sequence of

cascading holes, yielding a Cantorian distribution in x.

Depending on the character of the function f, the derived

distribution dy can also exhibit holes (not necessarily of a

Cantorian nature) that may be used explicitly to model

periods of rainfall inactivity.

Figure 3 presents a few examples of signals that exhibit

periods of no rain. While the pattern labeled a represents

actual rainfall reported every hour at La Honda, California

for a period of 171 days, sets labeled b, c, and d show

FMFP-generated patterns of similar durations. Pattern b

corresponds to the original FMFP with a fractal interpo-

lating function passing by four points, and obtained by

iterating only two out of the three corresponding affine

maps. Patterns c and d are also obtained by iterating only

two out of three maps, but are defined by the addition of a

nonlinear cosine perturbation as used in pattern c of Fig. 2.

Moreover, these last two projections have been computed

at an angle not perpendicular to x, a feature that provides

yet another generalization of our approach.
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Fig. 2 One-dimensional signals and their autocorrelations, power

spectra (log–log) and multifractal spectra. a Real rainfall measured in

Boston every few seconds; b A FMFP pattern via the original

formulation (Eqs. 1, 2); c A FMFP pattern via a nonlinear cosine

perturbation extension; d A FMFP pattern from a hyper-surface

extension. Key statistics (top to bottom): se = 95, 101, 80, 200;

b = 1.33, 1.15, 1.36, 1.37; D1 = 0.96, 0.88, 0.85, 0.93. The

parameters used to generate these patterns may be found at the web

page http://puente.lawr.ucdavis.edu/serra_09.htm
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The four patterns in Fig. 3 not only share similar tex-

tures and intermittencies, but also comparable statistical-

multifractal attributes as reflected in identical correlation

scales se, similar spectral exponents b that range from 0.71

to 0.91 (computed up to a logarithmic frequency scale of

3), and similarly low entropy dimensions D1 ranging from

0.26 to 0.42. These patterns also share similar numbers of

events (as defined above 10% of the maximum value in

pattern a) ranging from 95 to 111, similar sizes on the

maximum period with no rain that range from 1116 to 1719

values, and comparable number of events reflecting lag-one

transitions from rain to no rain ranging from 53 to 60.

Notice how, as previously found for high-resolution data, it

is not possible to tell apart the real data set from the FMFP-

generated patterns, as all of them share the same essential

features, e.g., correlation scales, power spectrum scaling,

entropy dimensions, number of events, maximum lengths

of no rain (even at other thresholds not equal to 10%), and

number of events from rain to no rain (even for lag sepa-

rations other than one).

The FMFP framework may also be used to generate the

two-dimensional complex-looking patterns observed, for

instance, in a meteorological radar. A proof of concept of

this approach is presented in Figs. 4 and 5, for a couple of

pattern evolutions obtained via three-dimensional wires and

four-dimensional hyper-surfaces, respectively. Observe

how both evolutions, which interpolate linearly sets of

parameters leading to the patterns on the top left and bottom

right of both figures, produce rather complex images that

indeed exhibit typical features of radar-rainfall spatial

measurements. Notice, in particular, the non-trivial partition

of a rainfall pattern into several disconnected sub-sets as
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Fig. 3 One-dimensional intermittent signals and their autocorrela-

tions, power spectra (log–log) and multifractal spectra. a Real rainfall

data as measured in La Honda, California; b A FMFP pattern via the

original formulation; c A FMFP pattern via a nonlinear cosine

perturbation extension; d Another FMFP pattern via a nonlinear

cosine perturbation extension. Key statistics (top to bottom): se = 4,

4, 4, 4; b = 0.91, 0.84, 0.71, 0.80; D1 = 0.26, 0.36, 0.44, 0.42. Other

statistics (top to bottom): number of events above 10% of maximum

value in pattern a Ne = 111, 104, 95, 108; maximum number of

consecutive times with no rain Nnr = 1140, 1330, 1116, 1719; lag-

one events from rain to no rain Nrnr = 53, 57, 60, 60. The parameters

used to generate these patterns may be found at http://puente.lawr.

ucdavis.edu/serra_09.htm
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Fig. 4 Two-dimensional sets

resembling complex spatial

rainfall patterns obtained via the

FMFP leading to a wire in three

dimensions. For the specific

parameters used in this graph,

please visit http://puente.lawr.

ucdavis.edu/serra_09.htm

Fig. 5 Two-dimensional sets

resembling complex spatial

rainfall patterns obtained via the

FMFP leading to a hyper-

surface in four dimensions. For

the specific parameters used in

this graph, please visit

http://puente.

lawr.ucdavis.edu/serra_09.htm
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depicted in Fig. 4 and the emergence of filaments and holes

over a range of scales as shown in Fig. 5.

4 Implications of the FMFP for hydrologic modeling

That the FMFP, and its variants, may reproduce the features

exhibited in Figs. 2–5 has indeed some relevant implica-

tions. First, our results imply that describing the complex

rainfall patterns (and others) as ‘‘random,’’ as it is cus-

tomarily the case, may perhaps be unwarranted in each and

every situation. Second, and pending the efficient resolution

of the inverse FMFP problem, these results suggest the

possibility of fully describing (encoding) hydrologic data

sets by means of a small number of geometrical parameters.

This fact has momentous consequences for data archiving

and assimilation as the compression ratios are estimated to

easily exceed 100:1. Third, and once again contingent on

the aforementioned inverse problem solution, we foresee

that our fractal-multifractal framework may be used to

device a pattern classification scheme based on the FMFP

geometric parameters (perhaps similar to a classification

scheme based on attractor and dimensionality (e.g. Sivakumar

et al. 2007), which may lead to an increased understanding

of hydrologic and climatic regimes and the interrelation

between rainfall and other relevant climatic variables.

Finally, as the analysis of derived distributions leads to the

identification of ‘chaotic’ and also ‘random’ dynamics for

suitable regions in the FMFP parameter space (Puente et al.

2002) and as one may perhaps study the dynamics of

rainfall via the successive FMFP parameters corresponding

to successive sets, the present results also suggest that the

general framework explained herein may indeed serve as a

sensible ‘middle-ground’ approach to hydrologic modeling,

especially in tandem with a chaotic dynamic framework

[see also Sivakumar (2004, 2009) for some details], one not

requiring stochastic partial differential equations but rather

geometric trends.

Further, it is worth noting that the complex patterns

illustrated in this work can hardly be obtained by resorting

to classical stochastic approaches. Moreover, the FMFP

can generate an incredible variety of patterns that may

cover, in principle, the whole variety of possible natural

observations, thus suggesting a completeness of the

framework in an algebraic sense.

5 Summary and conclusions

We have reviewed a general deterministic approach (and

its extensions) aimed at the encoding of rainfall time series

and rainfall spatial distributions. Our method can generate

a vast array of patterns, which share the overall appearance

and statistics of measured data sets. These patterns are

obtained as projections of fractal functions illuminated by

multifractal sets and are generated deterministically by

iterating simple affine maps. The encoding of these patterns

using this procedure is both efficient and parsimonious, as

the number of coefficients that define the affine mappings

is relatively small. This is a particularly desirable feature of

a mathematical model as it implies, besides the simplicity

of the record’s description, also a significant compression

ratio of the data set, which can exceed ratios of 100:1.

While our method appears particularly suited to encode

rainfall sets in one and two-dimensions, the procedure can

be easily extended to simulate other climatic variables and

other complex sets arising in hydrologic (geophysical)

applications.

Further advancing the practical applicability of the

fractal-multifractal procedure requires an efficient solution

of the inverse problem, i.e., the problem of finding a set of

suitable affine map’s parameters yielding a projection that

matches a given measured data series. Given the enormous

variety of patterns that can be generated within the FMFP

framework, finding the appropriate set of parameters is

tantamount to finding a needle in a haystack. Efficient

solution of such an inverse problem involves not only

devising clever ways to minimize the number of generated

patterns during a given search but also making critical

advances in computational power. Definite advances have

recently been made in this direction, and progress on this

subject will be reported in a future manuscript, including

the encoding of the time evolution of measured spatial

patterns.
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